
一、 集合符号
| 符号 |
数学意义 |
实用举例 |
读音(中文+英文常用念法) |
| \{\ \} |
集合的表示符号,用于列举或描述集合元素 |
列举法:\{1,2,3\};描述法:\{x\mid x>0,x\in\mathbb{Z}\} |
中文:大括号英文:braces |
| \mathbb{N} |
自然数集(通常包含 $0$,\mathbb{N}^* 表示正自然数集) |
\mathbb{N}=\{0,1,2,3,\dots\} |
中文:自然数集英文:set of natural numbers,符号念“N” |
| \mathbb{Z} |
整数集 |
\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\} |
中文:整数集英文:set of integers,符号念“Z” |
| \mathbb{Q} |
有理数集 |
\mathbb{Q}=\{x\mid x=\frac{p}{q},p\in\mathbb{Z},q\in\mathbb{N}^*,p与q互质\} |
中文:有理数集英文:set of rational numbers,符号念“Q” |
| \mathbb{R} |
实数集 |
\sqrt{2}\in\mathbb{R},\ \pi\in\mathbb{R} |
中文:实数集英文:set of real numbers,符号念“R” |
| \mathbb{C} |
复数集 |
\mathbb{C}=\{a+bi\mid a,b\in\mathbb{R},i^2=-1\} |
中文:复数集英文:set of complex numbers,符号念“C” |
| \in |
元素属于集合 |
$2\in\mathbb{N},\ \sqrt{2}\in\mathbb{R}$ |
中文:属于英文:belongs to |
| \notin |
元素不属于集合 |
\sqrt{2}\notin\mathbb{Q},\ -1\notin\mathbb{N}^* |
中文:不属于英文:does not belong to |
| \emptyset |
空集(不含任何元素的集合) |
\{x\mid x^2=-1,x\in\mathbb{R}\}=\emptyset |
中文:空集英文:empty set / null set |
| \subseteq |
子集(A 所有元素在 B 中,允许 A=B) |
\{1,2\}\subseteq\{1,2,3\},\ \emptyset\subseteq 任意集合 |
中文:包含于 / 子集英文:is a subset of |
| \subsetneqq |
真子集(A\subseteq B 且 A\neq B) |
\{1,2\}\subsetneqq\{1,2,3\},\ \mathbb{N}\subsetneqq\mathbb{Z} |
中文:真包含于 / 真子集英文:is a proper subset of |
| \supseteq |
超集(A\subseteq B 的逆关系) |
\{1,2,3\}\supseteq\{1,2\} |
中文:包含 / 超集英文:is a superset of |
| \supsetneqq |
真超集(A\supseteq B 且 A\neq B) |
\mathbb{Z}\supsetneqq\mathbb{N} |
中文:真包含 / 真超集英文:is a proper superset of |
| = |
集合相等(元素完全相同) |
\{x\mid x^2=4\}=\{2,-2\} |
中文:等于英文:equals |
| \cup |
并集(属于 A 或 B 的元素集合) |
A=\{1,2\},B=\{2,3\}\Rightarrow A\cup B=\{1,2,3\} |
中文:并 / 并集英文:union |
| \cap |
交集(属于 A 且 B 的元素集合) |
A=\{1,2\},B=\{2,3\}\Rightarrow A\cap B=\{2\} |
中文:交 / 交集英文:intersection |
| A\setminus B(或 A-B) |
差集(属于 A 但不属于 B 的元素集合) |
A=\{1,2,3\},B=\{2\}\Rightarrow A\setminus B=\{1,3\} |
中文:A减B / A与B的差集英文:set difference of A and B |
| \complement_{U}A |
补集(全集 U 中不属于 A 的元素集合) |
U=\mathbb{Z},A=\{x\mid x>0\}\Rightarrow\complement_{U}A=\{x\mid x\le0\} |
中文:全集U中A的补集英文:complement of A in U |
| A\times B |
笛卡尔积(有序对组成的集合) |
A=\{1,2\},B=\{a,b\}\Rightarrow A\times B=\{(1,a),(1,b),(2,a),(2,b)\} |
中文:A与B的笛卡尔积英文:Cartesian product of A and B |
二、 逻辑符号
| 符号 |
数学意义 |
实用举例 |
读音(中文+英文常用念法) |
| P,Q,R |
命题变元(可判断真假的陈述句) |
P:$2$ 是偶数;Q:$3>5$ |
中文:命题P/命题Q英文:proposition P / proposition Q |
| \neg |
否定联结词(“非”) |
P:$2$ 是偶数,\neg P:$2$ 不是偶数 |
中文:非英文:negation / not |
| \land |
合取联结词(“且”,同真才真) |
P:$1<2,Q:$2<3,P\land Q 为真 |
中文:且 / 合取英文:conjunction / and |
| \lor |
析取联结词(“或”,一真则真) |
P:$1>2,Q:$2<3,P\lor Q 为真 |
中文:或 / 析取英文:disjunction / or |
| \rightarrow |
蕴含联结词(“若…则…”) |
P:x>2,Q:x>1,P\rightarrow Q 为真 |
中文:蕴含 / 若…则…英文:implication / if...then... |
| \leftrightarrow |
等价联结词(“当且仅当”) |
P:x 是偶数,Q:x 能被2整除,P\leftrightarrow Q 为真 |
中文:等价于 / 当且仅当英文:equivalence / if and only if(iff) |
| \forall |
全称量词(“对所有”) |
\forall x\in\mathbb{R},x^2\ge0 |
中文:对任意 / 对所有英文:universal quantifier / for all |
| \exists |
存在量词(“存在”) |
\exists x\in\mathbb{Z},x^2=4 |
中文:存在英文:existential quantifier / there exists |
| \exists! |
唯一存在量词(“存在唯一”) |
\exists!x\in\mathbb{R},2x=4 |
中文:存在唯一英文:unique existential quantifier / there exists uniquely |
| \Rightarrow |
推导符号(“推出”) |
x>3\Rightarrow x>2 |
中文:推出英文:implies |
| \Leftrightarrow |
等价推导符号(“等价于”) |
x^2=1\Leftrightarrow x=\pm1 |
中文:等价于英文:if and only if / is equivalent to |
| \vdash |
形式证明符号(“可证”) |
A\vdash B(B 可由 A 证明) |
中文:可证 / 断定英文:proves / syntactically entails |
| \models |
满足符号(“模型满足”) |
\mathbb{R}\models\forall x(x^2\ge0) |
中文:满足 / 模型满足英文:satisfies / semantically entails |
三、 补充说明
- 符号的英文念法多用于国际教材或学术交流,中文读音更适合日常课堂表述。
- 部分符号有简化读法,例如 \complement_{U}A 日常可直接读“A 的补集”,前提是上下文明确全集 U。
|
温馨提示:
本文数学第一章:认识数学符号②-集合与逻辑符号由 digger 发表于 2026-1-8 18:17
原文链接:https://www.jiangmen.pro/thread-120-1-1.html
- 1、本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2、本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3、本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4、未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5、匠们网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6、下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7、本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
|